5 Local Parametrization of Space Curves at Singular Points
نویسندگان
چکیده
We propose a symbolic computation algorithm for computing local parametrization of analytic branches and real analytic branches of a curve in n-dimensional space, which is de ned by implicit polynomial equations. The algorithm can be used in space curve tracing near a singular point, as an alternative to symbolic computations based on resolutions of singularities.
منابع مشابه
Chapter 2: Operations on Polynomial Curves and Surfaces
1 Plane Curves 2 1.1 Computation of Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Expansion at Simple Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Expansion at Singular Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Newton Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 Local...
متن کاملUsing a bihomogeneous resultant to find the singularities of rational space curves
We provide a new technique to detect the singularities of rational space curves. Given a rational parametrization of a space curve, we first compute a μ-basis for the parametrization. From this μ-basis we generate three planar algebraic curves of different bidegrees whose intersection points correspond to the parameters of the singularities. To find these intersection points, we construct a new...
متن کاملOn Singular Points of Quasilinear Differential and Differential-algebraic Equations
We show how certain singularities of quasilinear diierential and diierential-algberaic equations can be resolved by taking the solutions to be integral manifolds of certain distributions rather than curves with speciic parametrization.
متن کاملSymbolic Parametrization of Curves
If algebraic varieties like curves or surfaces are to be manipulated by computers, it is essential to be able to represent these geometric objects in an appropriate way. For some applications an implicit representation by algebraic equations is desirable, whereas for others an explicit or parametric representation is more suitable. Therefore, transformation algorithms from one representation to...
متن کاملCounting Nodes on Rational Plane Curves
In this paper, we consider polynomial parametrized curves in the affine plane k over an algebraically closed field k. Such curves are given by κ : k → k : t 7→ (x(t), y(t)), and may or may not contain singular points. The problem of how many singular points there are is of specific importance to the theory of polynomial knots, as it gives a bound on the degrees necessary to achieve a parametriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991